
Enhanced Hygiene Measures and 
Norovirus Transmission during an Outbreak 

Technical Appendix 1: Methods 

Estimation of the Generation Time Distribution 

Time interval data from large norovirus outbreaks in Sweden in 1999 (norovirus 

genogroup II) in childcare centers (1) were used to estimate the generation time distribution by 

the maximum likelihood method (Figure 2 in main text). The input data consist of a vector of the 

observed time intervals s, with s1, s2,… sn denoting the times between symptom onset in persons 

who attended a childcare center and the times of symptom onset in household members of the 

infected persons. 

We assume that the generation time distribution follows a gamma distribution with a 

shape parameter α and a scale parameter β. The log-likelihood for the observed time intervals s, 

given the parameters for the generation time, is 
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The estimated maximum likelihood estimates are α = 3.35 and β = 1.09, resulting in a 

peak generation time of 2.6, and a mean generation time of 3.6 days. Other positively skewed 

unimodal distributions such as the Weibull distributions did not produce a significantly better fit. 

As the generation time distribution might also be a realization of a mixture of several 

components, we fitted the data with a mixture of 2 or 3 gamma distributed components. This did 

not give a significantly better fit than a 1-component model (Technical Appendix 1 Table). 

Technical Appendix 1 Table. Summary of a fit of gamma distribution with 1, 2, or 3, components, 
respectively, to the serial interval data 
No. components log likelihood Deviance Degrees of freedom p value 
1 345.176    
2 338.290 6.886 3 0.076 
3 332.609 12.567 6 0.051 
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Estimation of the Effective Reproduction Number, R 

Definition of Transmission Matrix 

Let t = (t1,…,tn) be the vector of observed times of symptom onset of observed cases {1, 

…, n}. We assume that the elements of t are ordered such that ti ≤tj for all i <j. For subsets {ik, … 

ik+j} ⊆ {1,…,n} with all permutations of observations within this subset are 

equivalent. We chose 1 possible ordering arbitrarily. We now define a transmission matrix 

V = (vi,j), whose elements represent the probability that the person with time of symptom onset ti 

was infected by the person with time of symptom onset tj, thus 
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case i > 2 was infected by another case in the set of observed cases, we get: 
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for all i > 2. For i =1, the index case, we assume that: 
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Furthermore, we assume that vi,j = 0 for all j < i. This assumption means that the ordering 

of times of infection is equivalent to the ordering of observed times of symptom onset, and more 

specifically, that persons cannot have infected themselves and cannot have infected persons with 

earlier time of symptom onset than their own. The matrix V is a lower triangular matrix and 

therefore does not contain cycles. 

Translation of Transmission Matrix to Reproduction Number Estimates 

To translate the transmission matrix V to reproduction number estimates, any 

transmission matrix V may represent many different transmission trees. A transmission tree 

consists of nodes representing all cases of the outbreak and direct edges between nodes 

representing transmission of infection between the cases. 

Let a transmission tree be represented by a binary matrix U = (ui,j) of infectious contacts 

with ui,j = 1 if case i is infected by case j and ui,j = 0 if case i is not infected by case j. The row 

vector in matrix U can be seen as a draw from a multinomial distribution of order 1 (each case-

patient received his or her infection from exactly 1 other case-patient) and a probability equal to 
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a row from matrix V, producing a vector ui of 0s and only 1 element equal to 1: ui = 

multinomial(1, vi). 

With a transmission tree, it is possible to simulate an epidemic curve. For any pair of 

cases i, j of which ui,j = 1 draw a generation time τi from the generation time distribution 

)( θτ |g , with θ being the parameters of the generation time distribution. With the generation 

time τi, the time of infection of case i can be determined: ti = tj + τi. If the time of infection is 

known from the index case, all times of infections in all other cases can be determined, which 

results in an epidemic curve. 

The expected number of secondary cases produced by case j in these possible outbreaks 

based on transmission matrix V is: 
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To translate this to an estimate of R for each day in the outbreak t; the mean Rj of all 

cases with the same date of symptom onset is calculated, for all dates with observations: 
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where m represents the label of the first case with symptom onset on day t, and q the total 

number of cases on day t. 

Likelihood Function 

The likelihood that an observed time interval ti – tj represents a transmission event is 

determined as a product of the probability that i was infected by j and the probability that the 

time interval of symptom onset is ti – tj. That is, 
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The likelihood of any case-patient j transmitting infection to case-patient i, becomes: 
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Combining for all observed cases, the likelihood of a transmission matrix V becomes: 
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for a given value of θ, and omitting the index case (i = 1) from the multiplication. Given the 

parameters for the generation time distribution θ, and all dates of symptom onset t, the 

parameters vi,j can be estimated. To estimate vi,j, the above likelihood function was evaluated in 

an adaptive rejection algorithm (Metropolis Hastings sampler) obtaining sets of V matrices with 

relative frequencies proportional to their likelihood (2–4). 

To be reasonably certain of convergence and sufficient mixing, we have run 4 

independent chains of 40,000 iterations and 3 independent chains with additional information 

about population structure and pathogen genotype and compared resulting estimates of 

reproduction numbers. 

Adding additional information is possible by setting implausible transmission 

probabilities in the transmission matrix V to 0. This may be considered a very strong prior 

assumption, but we have seen (Figure 4 in main text) that the resulting reproduction numbers are 

not strongly influenced by this radical assumption. In a true Bayesian approach, we might have 

applied different weights to pairs of cases within and between camps by multiplying a matrix 

containing these weights with the transmission matrix V. 

As described above, case-patients with a date of symptom onset on the same day are 

given an arbitrary order of infection within that day. Sampled transmission matrices represent all 

possible (noncyclic) patterns among cases, given the arbitrary order. Now any other possible 

pattern can be found by permutation of indexes among cases with the same date of symptom 

onset. Because these all have the same contribution to the likelihood such permutations do not 

change the likelihood: all permutations are equally likely. Such permutations also have the same 

reproduction numbers, only for different cases (indices). If we average over all such 

permutations with identical contributions, the resulting reproduction numbers do not change. 

Expected Time Course of Reproduction Number 

The expected time course of the reproduction number R(t) is given by the following 

equation: 

Page 4 of 5 



( ) ( )( )( ) uhh RttGttGtR ρ−−+−= 1)(  
 

Here, is the day of implementation of enhanced hygiene measures, G is the cumulative 

probability function of the generation time distribution,

ht

ρ is the relative reduction of the 

reproduction number due to implementation of hygiene measures and is the effective 

reproduction number without enhanced hygiene measures. 
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